VNET/P: Bridging the Cloud and High Performance Computing Through Fast Overlay Networking

¹Lei Xia, ²Zheng Cui, ³John Lange, ⁴Yuan Tang, ¹Peter Dinda, ²Patrick Bridges

1. Northwestern University 2. University of New Mexico

3. University of Pittsburgh

VNET Mode

- VNET: A layer 2 virtual overlay network for the user's virtual machines
 - -Provide location independence to VMs
 - -Carry VMs' traffic via configurable overlay network
- Virtual machines on virtual networks as the abstraction for computing
- Virtual network as a fundamental layer for measurement and adaptation

Bridge the Cloud and HPC

- Adaptive cloud/HPC-spanning model: Seamlessly bridge distributed cloud and tightly-coupled resources
 - -Applications can dynamically span to both environments
 - -To provide effective on-demand resources for HPC
- Adaptive cloud/HPC-spanning model is currently limited by performance of virtual networking
 - -How can we provide high performance inter-VM traffic while VMs are located on the same data center/cluster?

Architecture of VNET/P

- Move virtual networking directly into VMM
- -Enable optimizations that can only happen inside VMM

Optimizations

High throughput mode avoids most VM exits

Future Work

- Further performance improvement
 - -Further performance optimizations (in submission)
 - Optimistic interrupts, Cut-through forwarding, Noise isolation
 - -Move VNET up to guest through guest code injection (to appear in
- An Ethernet abstraction for VMs on non-Ethernet interconnects (InfiniBand, SeaStar, etc)

Performance of VNET/P

VNET/P achieves scalable bandwidth and latency on multiple nodes

Mop/s	Native-1G	VNET/P-1G	VNET/P-1G Nation-1G (%)	Native-10G	VNET/P-100	VNET/P-100 (%)
ep.B.8	103.15	101.94	98.8%	102.18	102.12	99.9%
ep.B.16	204.88	203.9	99.5%	208	206.52	99.3%
cp.C.8	103.12	102.1	99.0%	103.13	102.14	99.0%
ep.C.16	206.24	204.14	99.0%	206.22	203.98	98.9%
mg.B.8	4400.52	3840.47	87.3%	5110.29	3796.03	74.3%
mg.B.16	1506.77	1498.65	99.5%	9137.26	7405	81.0%
cg.B.8	1542.79	1319,43	85.5%	2096.64	1806.57	. 86.2%
cg.B.16	160.64	159.69	99,4%	592.08	554.91	93.7%
ft.B.16	1575.83	1290.78	81.9%	1432.3	1228.39	85.8%
is.B.8	78.88	74.61	94,6%	59.15	59.04	99.8%
is.B.16	35.99	35.78	99.4%	23.09	23	99.6%
is.C.8	89.54	82.15	91.7%	132.08	131.87	99.8%
is.C.16	84.76	82.22	97.0%	77.77	76.94	98.9%
lu.B.8	6818.52	5495.23	80.6%	7173.65	6021.78	83.9%
lu.B.16	7847.99	6694.12	85.3%	12981.86	9643.21	74.3%
sp.B.9	1361.38	1215.85	89.3%	2634.53	2421.98	91.9%
sp.B.16	1489.32	1399.6	94,0%	3010.71	2916.81	96.9%
bt.B.9	3423.52	3297.04	96.3%	5229.01	4076.52	78.0%
bt.B.16	4599.38	4348.99	94.6%	6315.11	6105.11	96.7%

Conclusion

- Extend virtual networking for VMs down to clusters and supercomputers
 - -Such model is limited currently by virtual networking performance
- VNET/P: high performance virtual overlay networking for tightly-coupled parallel systems
 - -Overlay networking directly implemented into VMM
 - -High performance on 1Gb/10Gb networks
- Software-based overlay network can be extended into tightlycoupled environments