
A Case for Tracking and Exploiting

Inter-node and Intra-node

Memory Content Sharing

in Virtualized Large-Scale Parallel

Systems

Lei Xia Peter Dinda

Northwestern University
{lxia, pdinda}@northwestern.edu

http://v3vee.org

Overview

• Many services can be simplified and enhanced

by leveraging the memory content sharing within

individual nodes and across nodes

• Detailed study of the memory content sharing in

scientific workloads

• A proposed service for scalable identifying and

tracking of inter-node memory content sharing

in large-scale parallel systems

Motivation

• Many services in HPC systems can be simplified

and improved by leveraging the intra- and inter-

node memory content sharing

• Content-sharing detection is a common primitive

that can be factored out of these services

2

Memory Content Sharing Tracking/Detection Service

Checkpointing
Replication

Service
VM Migration

Content-Sharing Aware Checkpointing

• Checkpointing is important

 Widely used for fault tolerance in HPC systems
[AGARWAL-ICS’04, MOODY-SC’10]

 Larger checkpoint size, more checkpoints
 50~200TB/step, MTTR ~ 10 minutes [MOODY-SC’10]

• Content-sharing-Aware Checkpointing

 Save only one copy of each distinct content (block)

across the system

 Reduced checkpoint file size

 Reduced I/O and network traffic

3

Virtual Machines Co-Migration

• Virtual machine migration in HPC
 Migrating a single VM [CLARK-NSDI’05, SAPUNTZAKIS-OSDI’02] /a set of VMs

[NISHIMURA-CCGRID’07]

 Fault tolerance, easy maintenance, load balancing [NAGARAJAN-ICS’07]

• Content-sharing detection can benefit

 Single VM migration: Reconstruct VM memory from

multiple source VMs

 VM starts faster on remote host

 Collective VM co-Migration: Migrate only one copy of each

distinct memory content across all VMs

 Reduce network traffic to migrate the set of VMs

4

Memory Replication System for

High Availability

• Redundant Systems by Replication

 Enhance availability and reliability [FERREIRA-SC’11, NATH-NSDI’06]

 Maintain a certain copies for each memory page in system

 Costly, large amount of memory needed

• Memory Replication System using Content-

sharing Service

 Reduce memory usage by exploiting existing content

redundancy in applications

 Avoid creating memory replicas explicitly when there are

memory pages with same contents already exists in

remote nodes

5

More ……

 Determining good points for system

checkpointing and migration

 Monitoring amount of sharing over time

 Suggests a good time for checkpoint/migration

 Power efficient system support

 Lowering power to saving power

 Could reduce system stability/availability intentionally

 Transparently enhance the lowered availability to users

through content-share aware redundancy

6

Memory Content Sharing in

Scientific Workloads

• Experimental Study:

 Goal: Examine intra- and inter-node memory content

sharing in parallel applications.

 Benchmarks: Moldy, NAS, HPCC, Lammps and Miniapps

 Method: run a set of parallel applications & benchmarks

on a cluster

 Stop all processes periodically, dump the memory content of

each process, generate hash for each memory block

 Compare the hash to analysis the number of content-shared

blocks within and across nodes

 Percentage of pages in system that have unique

content

7

Opportunity: Applications with Much

Inter-node Sharing

Many applications have much inter-node sharing

but little intra-node sharing
8

Potential Memory Gains

Memory that could be potentially reduced when inter-node

content sharing is removed

9

Applications with Intra-node Sharing

10

Some applications have little inter-node sharing but

some intra-node sharing

Content Sharing using Smaller Block Size

Reducing the block size does not help much to find more content sharing
11

Memory Content Sharing over Time

Different level of content sharing over time

12

Experimental Study Summary

• Intra- and inter-node memory content

sharing is common in parallel applications

• There is opportunity for exploiting this

memory content sharing to benefit many

services in HPC systems

• An online content-sharing detection system

is needed

13

A Tracking System Could be Built

• Content-sharing detection/tracing is a common
primitive that can be factored out of these
services

14

Memory Content Sharing Tracking/Detection Service

Checkpointing
Replication

Service
VM Migration

Memory Content-Sharing

Detection System

• Detecting and tracking content-sharing in the

system

• Inter-node and intra-node memory content sharing

• Providing the content-sharing status to up-

level services

• Advisory system

• Best effort service with low performance overhead

• Could have false positives/false negatives

• Online detection system

15

Information Provided by

the Detection System

• Degree of memory content sharing

 Percentage of pages in system that have unique

content

• Replica discovery

• Find all instances of specific page content

 Find hot or cold page contents

 Number/Locations of memory blocks with more

than/less than k copies in the system

16

Challenges

• Scalability

 Scale from small of number of nodes to large scale

system

• Decentralized Control

 Centralized control prevents scalability and is a single point

of failure

 All information collection/computation are distributed on all

nodes

• Online Detection
 Dynamic detection/tracking of memory content sharing in

system

17

Assumptions

• High throughput/low latency network
 Network scales as size increases

 Supercomputer network (such as mesh)

 Network synchronization between nodes are much
faster than distributed systems

• Node failure is independent
 System can rely on replication for fault tolerance

 The system can replicate control information across
more than more node to provide fault tolerance

• Securely controlled environments
 No critical security concerns

 Can use less CPU-intensive no-cryptographic hash
functions

18

System Architecture

ShareDetect

Virtual Machines (VMs)

VM

Hypervisor (VMM)

Memory Content Synchronizer

Memory
Tracer

Update Interface Content-Sharing Query Interface

VM Migration
/Checkpoint

Manager

VM VM

Virtual Machines (VMs)

VM

Hypervisor (VMM)

Memory
Tracer

VM Migration
/Checkpoint

Manager

VM VM

Content-Sharing Detection System
19

Proposed Approach

• Front-end: Memory Tracer

 Running in each node

 Track memory updates
 dirty bit in page table entry

 Rehash all updated pages
 Periodically

 Event-driven (performance counter, etc)

 Send new hashes to back-end
 Determine which node it should send the hash

 by only the hash value itself (consistent hash)

 Locate memory pages given its hash

20

Proposed Approach

• Back-end: System-wide DHT

 Collect and maintain all hashes of distinct
memory pages in the system

 Compute global sharing information

 Handle queries from clients/services manager

 Fault Tolerance of DHT
 DHT is split into partitions

 Each partition is stored in more than one node for
redundant and fault tolerance

 Synchronization/consistence of partition on update

21

Overhead Study

• System overheads of memory tracer

 CPU overheads to scan and rehash memory

pages

 Network overheads to send hashes to DHT

22

Per Node CPU Overhead of

the Memory Tracer (Interval: 2s)

• Average: less than 128ms (6.4% overhead),

• Burst Updates: less than 512ms (25% overhead)

• SuperHash: 2% average/8.3% burst
23

Per Node CPU Overhead of

the Memory Tracer (Interval: 5s)

• Average: less than 128ms (2.6% overhead),

• Burst Updates: less than 512ms (10% overhead)

• SuperHash: <1%/3.3%
24

Per Node Network Overhead of

the Memory Tracer (Interval: 2s/5s)

• Average: less than 512KB

• Burst Updates: less than 1500KB 25

Related Works

 Content-based page sharing
 Reduce memory usage for co-located VMs in individual host

 Xen, Vmware, Difference Engine [OSDI’08]

 SBLLmalloc [IPDPS’11]

 Memory Buddies [VEE’09]

 Find better co-located decisions by VMs’ memory footprint

 Central control node

 VM Migration
 Live Gang Migration [HPDC’11]

 Optimization for migrating group of co-located VMs

 VM Flock [HPDC’11] and Shrinker [EuroPar’11]

 VM Migration across datacenter

 Locate memory pages and disk blocks in destination datacenter

26

Summary

• Scalable tracking of inter-node memory content

sharing would be a powerful primitive in parallel

systems

• Various services would greatly simplified and enhanced if

such a system existed

• Intra-/Inter-node memory content sharing is common

in scientific workloads

• There are opportunities to exploiting the content sharing

• A proposed approach for scalable identifying and

tracking of inter-node memory content sharing in

large-scale systems

 Thanks, Questions??

 Lei Xia
 Ph.D candidate, Northwestern University

 lxia@northwestern.edu

 http://www.cs.northwestern.edu/~lxi990

 V3VEE Project: http://v3vee.org

28

29

