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Overview 

• Many services can be simplified and enhanced 

by leveraging the memory content sharing within 

individual nodes and across nodes 

• Detailed study of the memory content sharing in 

scientific workloads 

• A proposed service for scalable identifying and 

tracking of inter-node memory content sharing 

in large-scale parallel systems 



Motivation 

• Many services in HPC systems can be simplified 

and improved by leveraging the intra- and inter-

node memory content sharing 

• Content-sharing detection is a common primitive 

that can be factored out of these services 
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Memory Content Sharing Tracking/Detection Service 

Checkpointing 
Replication 

Service 
VM Migration 



Content-Sharing Aware Checkpointing 

• Checkpointing is important 

 Widely used for fault tolerance in HPC systems 
[AGARWAL-ICS’04, MOODY-SC’10] 

 Larger checkpoint size, more checkpoints 
 50~200TB/step, MTTR ~ 10 minutes [MOODY-SC’10] 

• Content-sharing-Aware Checkpointing 

 Save only one copy of each distinct content (block) 

across the system 

 Reduced checkpoint file size 

 Reduced I/O and network traffic 
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Virtual Machines Co-Migration 

• Virtual machine migration in HPC 
 Migrating a single VM [CLARK-NSDI’05, SAPUNTZAKIS-OSDI’02] /a set of VMs 

[NISHIMURA-CCGRID’07] 

 Fault tolerance, easy maintenance, load balancing [NAGARAJAN-ICS’07] 

• Content-sharing detection can benefit 

 Single VM migration:  Reconstruct VM memory from 

multiple source VMs 

 VM starts faster on remote host 

 Collective VM co-Migration:  Migrate only one copy of each 

distinct memory content across all VMs 

 Reduce network traffic to migrate the set of VMs 
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Memory Replication System for  

High Availability 

• Redundant Systems by Replication 

 Enhance availability and reliability [FERREIRA-SC’11, NATH-NSDI’06]  

 Maintain a certain copies for each memory page in system 

 Costly, large amount of memory needed 

• Memory Replication System using Content-

sharing Service 

 Reduce memory usage by exploiting existing content 

redundancy in applications 

 Avoid creating memory replicas explicitly when there are 

memory pages with same contents already exists in 

remote nodes 
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More …… 

 Determining good points for system 

checkpointing and migration 

 Monitoring amount of sharing over time 

 Suggests a good time for checkpoint/migration 

 Power efficient system support 

 Lowering power to saving power 

 Could reduce system stability/availability intentionally 

 Transparently enhance the lowered availability to users 

through content-share aware redundancy 
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Memory Content Sharing in  

Scientific Workloads 

• Experimental Study: 

 Goal: Examine intra- and inter-node memory content 

sharing in parallel applications. 

 Benchmarks: Moldy, NAS, HPCC, Lammps and Miniapps 

 Method: run a set of parallel applications & benchmarks 

on a cluster 

 Stop all processes periodically, dump the memory content of 

each process, generate hash for each memory block 

 Compare the hash to analysis the number of content-shared 

blocks within and across nodes   

 Percentage of pages in system that have unique 

content 
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Opportunity: Applications with Much 

Inter-node Sharing 

Many applications have much inter-node sharing  

but little intra-node sharing 
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Potential Memory Gains 

Memory that could be potentially reduced when inter-node 

content sharing is removed 
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Applications with Intra-node Sharing 
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Some applications have little inter-node sharing but 

some intra-node sharing 



Content Sharing using Smaller Block Size 

Reducing the block size does not help much to find more content sharing 
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Memory Content Sharing over Time 

Different level of content sharing over time 
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Experimental Study Summary 

• Intra- and inter-node memory content 

sharing is common in parallel applications 

• There is opportunity for exploiting this 

memory content sharing to benefit many 

services in HPC systems 

• An online content-sharing detection system 

is needed 
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A Tracking System Could be Built  

• Content-sharing detection/tracing is a common 
primitive that can be factored out of these 
services 
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Memory Content Sharing Tracking/Detection Service 

Checkpointing 
Replication 

Service 
VM Migration 



Memory Content-Sharing  

Detection System 

• Detecting and tracking content-sharing in the 

system 

• Inter-node and intra-node memory content sharing 

• Providing the content-sharing status to up-

level services 

• Advisory system 

• Best effort service with low performance overhead 

• Could have false positives/false negatives 

• Online detection system 
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Information Provided by  

the Detection System 

• Degree of memory content sharing 

 Percentage of pages in system that have unique 

content 

• Replica discovery 

• Find all instances of specific page content 

 Find hot or cold page contents 

 Number/Locations of memory blocks with more 

than/less than k copies in the system 
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Challenges 

• Scalability 

 Scale from small of number of nodes to large scale 

system 

• Decentralized Control 

 Centralized control prevents scalability and is a single point 

of failure 

 All information collection/computation are distributed on all 

nodes 

• Online Detection 
 Dynamic detection/tracking of memory content sharing in 

system 
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Assumptions 

• High throughput/low latency network  
 Network scales as size increases 

 Supercomputer network (such as mesh) 

 Network synchronization between nodes are much 
faster than distributed systems 

• Node failure is independent 
 System can rely on replication for fault tolerance 

 The system can replicate control information across 
more than more node to provide fault tolerance 

• Securely controlled environments 
 No critical security concerns 

 Can use less CPU-intensive no-cryptographic hash 
functions  
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System Architecture  
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Proposed Approach 

• Front-end: Memory Tracer 

 Running in each node 

 Track memory updates  
 dirty bit in page table entry 

 Rehash all updated pages 
 Periodically 

 Event-driven (performance counter, etc) 

 Send new hashes to back-end 
 Determine which node it should send the hash  

 by only the hash value itself (consistent hash) 

 Locate memory pages given its hash 
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Proposed Approach 

• Back-end: System-wide DHT 

 Collect and maintain all hashes of distinct 
memory pages in the system 

 Compute global sharing information 

 Handle queries from clients/services manager 

 Fault Tolerance of DHT 
 DHT is split into partitions  

 Each partition is stored in more than one node for 
redundant and fault tolerance 

 Synchronization/consistence of partition on update 
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Overhead Study 

• System overheads of memory tracer 

 CPU overheads to scan and rehash memory 

pages 

 Network overheads to send hashes to DHT 
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Per Node CPU Overhead of  

the Memory Tracer  (Interval: 2s) 

• Average: less than 128ms  (6.4% overhead),  

• Burst Updates:  less than 512ms (25% overhead) 

• SuperHash: 2% average/8.3% burst 
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Per Node CPU Overhead of  

the Memory Tracer (Interval: 5s) 

• Average: less than 128ms (2.6% overhead),  

• Burst Updates:  less than 512ms (10% overhead) 

• SuperHash:  <1%/3.3% 
24 



Per Node Network Overhead of  

the Memory Tracer (Interval: 2s/5s) 

• Average: less than 512KB  

• Burst Updates:  less than 1500KB 25 



Related Works 

 Content-based page sharing 
 Reduce memory usage for co-located VMs in individual host 

 Xen, Vmware, Difference Engine [OSDI’08]  

 SBLLmalloc [IPDPS’11] 

 Memory Buddies [VEE’09] 

 Find better co-located decisions by VMs’ memory footprint 

 Central control node  

 VM Migration 
 Live Gang Migration [HPDC’11] 

 Optimization for migrating group of co-located VMs 

 VM Flock [HPDC’11] and Shrinker [EuroPar’11] 

 VM Migration across datacenter 

 Locate memory pages and disk blocks in destination datacenter 
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Summary 

• Scalable tracking of inter-node memory content 

sharing would be a powerful primitive in parallel 

systems 

• Various services would greatly simplified and enhanced if 

such a system existed 

• Intra-/Inter-node memory content sharing is common 

in scientific workloads 

• There are opportunities to exploiting the content sharing 

• A proposed approach for scalable identifying and 

tracking of inter-node memory content sharing in 

large-scale systems 
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