

TOWARDS A MULTI-MODEL VIEWS SECURITY
FRAMEWORK

Lei Xia, Hao Huang, Shuying Yu
State Key Laboratory for Novel Software Technology, Nanjing University,22 Hankou Road, Nanjing,China 210093

xiaxlei@gmail.com, hhuang@nju.edu.cn, yushuying_278@163.com

Keywords: multiple model views; access control model; security model; security framework

Abstract: With increasing diversity and complexity of the computing environments, various security needs in one
system can no longer be met by single access control model at the same time. An operating system should
be able to enforce multiple access control models. A Multi-Model Views Security Framework is proposed,
which is able to enforce multiple access control model views in operating system flexibly.

1 INTRODUCTION

Various security requirements are coming up with
the sharply increased diversity and complexity of the
computing environments [Rushby,1992, Saltzer,1973].
To satisfy these security requirements, a variety of
security models were proposed in last twenty years.
Currently widely-used security models include mul-
tilevel security model (BLP [Bell,1975]) and its
variants (Biba [Biba,1977], Dion model [Dion,
1981]), Domain and Type Enforcement (DTE)
[Walker,1996, Badger,1995], RBAC [Sandhu,1996,
Sandhu,1997], and etc. Each of these models aims
mainly at one or few security require- ments, such as
BLP aiming at the confidentiality assurance, Biba
aiming at integrity assurance, DTE aiming at con-
fining the information flow channels [Rushby, 1992].

Previous operating system usually enforced only
one kind of access control model, for instance, Mul-
tics [Organick, 1972] implemented only BLP model
in it. However, as mentioned above,*the security
goals in different applications are various. These

*This research is supported by National Natural Science
Foundation of China under grant 60473093.

different security requirements result in different
security models needed for them. How operating
system to support this kind of multiple security
model views needs?

As a policy neutral security model, RBAC pro-
vides a valuable level of permission abstraction.
However, using RBAC to simulate MLS or DAC
models [Osborn, 2000] is over complex and therefore
unpractical in real-world operating system.

The Multi-Model Views Security Framework
(MMVSF) is proposed. Several access control mod-
els are embodied in MMVSF, including BLP, Biba,
DTE and RBAC. These classical models can be eas-
ily enforced in MMVSF to implement multiple ac-
cess control model views in system.

The remainder is organized as follows. Section 2
formally describes the MMVSF. Section 3 gives the
examples of enforcing multiple access control model
views. And section 4 is the conclusion.

2 MMVSF

2.1 The framework overview

The architecture of the MMVSF is shown in fig-

ure 2.1. MMVSF comprises of elements, relations
and mappings. A user in the framework is a system
user. A role is a job function or job title within some
associated authority. Subjects are active entities.
Objects are resource objects. Domain is a control
access attribute associated with each subject. And
type is the other control attribute associated with
objects. Permission is an approval of a particular
mode of access to object or interaction to subject.
Security label contains a confidentiality label and an
integrity label.

Figure 2.1 the MMVSF.

There are several relations and mappings be-
tween elements. user-role assignment relation,
user-subject relation, and subject-role mapping fig-
ure out the relations between users, roles and sub-
jects. Permissions in system can be authorized to
roles, which are given in role-permission authoriza-
tion relation. Role-domain authorization relation
gives the authorized domains of each role. Each
subject has only one running domain, which is given
in subject-domain mapping. Besides, each role has a
security label, and subject’s security label is deter-
mined by its running role. Each object has a type and
security label.

The Final Permissions the subject gets are
based on three kinds of permissions correspond-
ing to that subject: MLS Permissions, Domain
Permissions, Role Permissions.

2.2 Formal definitions

Table 2.1 Symbols of Elements Sets in MMVSF.

Set Name Symbol Set Name Symbol

Users U Subjects S
Objects O Domains D
Roles R Types T

Confidentiality
Labels C Integrity

Labels I

 Security Labels: SL⊆C×I
 Access modes: M={read, write, execute, ...}.
 Domain transfer operation: transfer, denotes

subject transfer from one domain to another do-
main.

 Permissions: CAP⊆O×M. (o, m)∈AP denotes

permission to access object o in mode m.
Definition 2.2 US ⊆ U×S，user-subject relation.
Many subjects can run on behalf of one user, but
each subject can only have one running user.

 user: S→U, mapping from subject to its run-
ning user. user(s)=u if and only if u∈U ∧ (u,
s)∈US.

Definition 2.3 UA⊆U×R, user-role assignment re-
lation. Each user can be assigned many roles and
each role can be assigned to many users.

 UR: U→2R, mapping from user to its assigned
role set: UR (u) = {r∈R| (u, r)∈UA}.

 SR: S→R, subject-role mapping, from the
subject to its running role. Each subject’s run-
ning role be assigned to its running user: SR(s)
∈UR(user (s)).

Definition 2.4 RL: R→SL, mapping from role to its
security label.

 Ssl: S→SL, mapping from subject to its secu-
rity label. Subject’s security label is equal to
its running role’s label: Ssl(s)=RL(SR(s)).

Definition 2.5 RD⊆R×D, role-domain authoriza-
tion relation, a many to many relation.

 RDom: R→2D, mapping from role to its au-
thorized domains set. RDom(r)={d∈D|(r,
d)∈RD}.

 SDom: S→D, mapping from subject to its
running domain. Subject’s running domain
must have been authorized to its running role,
which means: SDom (s)∈RDom(SR(s)).

Definition 2.6 object’s security attribute

MLS perms

Domain

Role perms Perms Role

Subject

Object

Label Domain perms Type Label

User Subject perms

 OT: O→T, mapping from an object to its type.
 OL: O→SL, from an object to its security label.

Definition 2.7 RCAP ⊆ R×CAP, role-permission
authorization relation. (r1, cap)∈RCAP denotes role
r1 has the Role permission cap.

 Rolecap: R→2CAP, role’s authorized permissions
set. Rolecap(r)={cap| (r,cap) ∈RCAP}.

Definition 2.8 Two control matrixes
 DTM: D×T→2M, domain-type access control

matrix. m∈DTM(d, t) denotes subjects in domain
d can access objects with type t in mode p.

 DDI: D×D→{Φ,{transfer}}, domain interaction
control matrix. transfer∈DDI(d1, d2) denotes
subjects in domain d1 can transfer into domain d2.

Definition 2.9 Multilevel Security rule: Mls_rule:
SL×SL→2M, a∈Mls_rule(l1, l2) implies subjects
with security label l1 can access target objects or
subjects with security label l2 in mode a. All of BLP
and Biba security rules are implemented in this
mapping. As a framework, the concrete implement-
ing of this function is not given here.

2.3 Permissions

 MLS Permission: mp(s,o)={(o,p)|p∈MLS_rule
(Ssl(s), OL(o))}.

 Domain Permission: dp(s,o)={(o,p)|p∈DTM
(SDom(s), OT(o)).

 Role Permission: rp(s,o)={(o,p)|(o,p)∈Rolecap
(SR(s))}.

A subject’s Final Permissions on an object is deter-
mined as: fp(s,o)= rp(s,o)∪(mp(s,o)∩tp(s,o)).

3 ENFORCE MULTIPLE MODELS

3.1 Enforcing Multilevel Security model

The way configuring MMVSF to enforce BLP
model is described as following:
(1) I={only_I}, there is only one integrity label in

system. |R|=|SL|, number of roles in the system

is the same as the number of the security labels.
Each role corresponds to one security label.

(2) D={gen_d}, T={gen_t}, only one domain and
type in system. RD={(r, gen_d)|r∈R}, all roles’
authorized domain is gen_d. all objects’ type is
gen_t: OT={(o, gen_t)| o∈O}.

(3) DTM={(d, t, p)|d∈D, t∈T, p∈OM}, domain
gen_d have all Domain Permissions to type
gen_t.

(4) Rolecap(r:R)=Φ, each role has no Role Permis-
sions.

We can use the similar way to enforce Biba model.

3.2 Enforcing DTE

(1) R={gen_r}, one role in system. UA={(u,
gen_r)|u∈U}, gen_r is assigned to every user.

(2) RD={(gen_r, d)|d∈D}, all domains in system
are authorized to the role gen_r.

(3) SL={only_sl)}, only one security label in system.
RL={(r,only_sl)|r∈R}. MLS_rule(only_sl, only_
sl)=M, subjects’ MLS Permissions contain all
permitted modes in the set M.

(4) Rolecap(r:R)=Φ.

3.3 Enforcing RBAC

(1) D={gen_d}, T={gen_t}, one domain and one
type in system. RD={(r, gen_d)| r∈R}, gen_d is
authorized to every role and all objects’ type is
gen_t, OT={(o, generic_t)| o∈O}.

(2) DTM(gen_d,gen_t)=Φ, subjects in domain
gen_d have no Domain Permissions to all ob-
jects in type gen_t.

(3) SL={only_sl)}, only one security label in system.
RL={(r,only_sl)|r∈R}. MLS_rule(only_sl, only_
sl)= Φ.

3.4 Enforcing multi-model views

Assume all users in system can be divided into three
groups: Grpa, Grpb and Grpc. Now we hope that

the model enforced on users in Grpa is MLS, on
Grpb is RBAC and on Grpc is DTE. The configura-
tion that enforces this multi-model views in one
system is given below.
(1) U=Grpa∪Grpb∪Grpc, three disjointed subsets.
(2) R=mls_rs∪ rbac_rs∪ {dte_r}. mts_rs is the

roles set corresponding to MLS model. rbac_rs
corresponding to RBAC and dte_r to DTE.

(3) D= {mls_d}∪{rbac_d}∪dte_ds.
(4) (u,r)∈UA∧(u,r’) ∉ UA, where u∈Grpa, r∈

mls_rs, r’∉mls_rs, roles in mls_rs are only per-
mitted to be assigned to users in Grpa. (u,
r)∈UA∧(u,r’) ∉ UA, where u∈Grpb, r∈

rbac_rs, r’∉rbac_rs, roles in rbac_rs can only
be assigned to users in Grpb. In the same way, (u,
dte_r)∈UA∧(u, r)∉UA, where u∈Grpc, r≠
dte_r.

(5) |mls_rs|=|SL|, number of roles in set mls_rs is the
same as number of security labels in system.
Each role in mls_rs corresponds to one security
label. MLS_rule(Ssl(r),tsl)=Φ, r∈rbac_rs, tsl∈

SL, roles in rbac_rs have no MLS Permissions.
MLS_rule(Ssl(dte_r),tsl)=M, tsl∈SL, role dte_r’s
has all of possible MLS permissions.

(6) (r,mls_d)∈RD∧(r,d)∉RD, where r∈mls_rs, d
≠mls_d, roles in mls_rs are only authorized do-
main mls_d. (dte_r,d)∈RD∧(r’,d) ∉ RD,
r’≠dte_r, d∈dte_ds, all domains in dte_ds are
authorized to role dte_r. Simliarly, (r,rbac_d)
∈RD∧(r,d)∉RD, where r∈rbac_rs, d≠rbac_d,
roles in rbac_rs are only authorized domain
rbac_d.

(7) (mls_d,t,m)∈DTM, t∈T, m∈M. DDI(mls_d, d)=
Φ, d∈D, subjects in domain mls_d can not
transfer to any other domains. Similarly, (rbac_d,
t,m) ∉DTM, t∈T, m∈M. DDI(rbac_d,d)=Φ,
d∈D.

(8) Rolecap(r)=Φ, r∈mls_rs∪{dte_r}. dte_r and all
roles in mls_rs have no Role Permissions.

4 CONCLUSION

The MMVSF security framework provides a way to
easily enforce multiple access control models in an
operating system to satisfy the diverse security re-
quirements in one system.

REFERENCES

Badger, L., Sterne, D. F. and Sherman, D. L., et al, 1995.
A Domain and Type Enforcement UNIX Prototype. In
Proceedings of the Fifth USENIX UNIX Security
Symposium.

Bell, D. and LaPadula, L., 1975. “Secure Computer Sys-
tems: Mathematical Foundations”, Technical Report
MTR-2547, MITRE Corporation, , Vol. I, MTR-2997
Rev.1.

Biba, K., 1977. Integrity Considerations for Secure Com-
puter Systems. MITRE Corporation, Technical Report
MTR-3153.

Dion, L. C., 1981. A complete protection model. In Pro-
ceedings of the IEEE Symposium on Research in Se-
curity and Privacy, 49-55.

Organick, E., 1972. The MULTICS System: An Examina-
tion of Its Structure. The MIT Press.

Osborn, S., Sandhu, R. and Munawer, Q., 2000. Config-
uring Role-based Access Control to Enforce Manda-
tory and Discretionary Access Control Policies. ACM
Transactions on Information and System Security,
Vol.3, No.2, Pages 85-106.

Rushby, J., 1992. Noninterference, Transitivity, and
Channel-Control Security Policies. Computer Science
Lab, SRI International, Technical Report CSL-92-02.

Sandhu, R., Coyne, E., Feinstein, H. and Youman, C.,
1996. Role-Based Access Control. IEEE Computer.
Vol.29, No.2.

Sandhu, R., 1997. Rational for the RBAC96 Family of
Access Control Models. In Proceedings of 1st ACM
Workshop on Role-based Access Control.

Walker, K. M., Sterne, D. F. and Badger, M. L., et al, 1996.
Confining Root Programs with Domain and Type En-
forcement (DTE). In Proceedings of the 6th USENIX
UNIX Security Symposium.

