
Investigating Virtual Passthrough I/O on Commodity
Devices

Lei Xia Jack Lange Peter Dinda Chang Bae
{lxia, jarusl, pdinda, changb}@northwestern.edu

Department of Electrical Engineering and Computer Science
Northwestern University

ABSTRACT
A commodity I/O device has no support for virtualization. A VMM

can assign such a device to a single guest with direct, fast, but in-

secure access by the guest’s native device driver. Alternatively, the

VMM can build virtual devices on top of the physical device, allow-

ing it to be multiplexed across VMs, but with lower performance.

We propose a technique that provides an intermediate option. In

virtual passthrough I/O (VPIO), the guest interacts directly with

the physical device most of the time, achieving high performance,

as in passthrough I/O. Additionally, the guest/device interactions

drive a model that in turn identifies (1) when the physical device

can be handed off to another VM, and (2) if the guest programs

the device to behave illegitimately. In this paper, we describe the

VPIO model, and present preliminary results in using it to support

two commodity network cards within the Palacios VMM we are

building. We believe that an appropriate model for an I/O device

could be produced by the hardware vendor as part of the design,

implementation, and testing process.

1. INTRODUCTION
I/O device virtualization plays a key role in the performance of

virtualized systems. This paper describes an approach to provide

unmodified guests secure yet high performance I/O using standard

commodity devices. Our goal is to safely multiplex a physical com-

modity I/O device among multiple guests that interact with it using

native device-specific drivers, with near-native performance.

Much effort has been, and is being put into achieving high perfor-

mance, yet secure I/O for virtual machines. For example, device

emulation (virtual devices) [20] implements virtualized hardware

devices completely in software within the VMM. Multiple virtual

Effort is funded by the National Science Foundation (NSF) via
grants CNS-0709168, CNS-0707365, and the Department of En-
ergy (DOE) via a subcontract from Oak Ridge National Laboratory
(ORNL) on grant DE-AC05-00OR22725.
This paper is an extension of our earlier publication on VPIO at
the First Workshop of I/O Virtualization (WIOV’08). It also de-
scribes an implementation of VPIO in our Palacios VMM, and a
performance evaluation using that implementation.

devices can then be multiplexed on top of a single physical device.

No guest software changes are required, but there is a significant

performance overhead. Special guest drivers that talk more effi-

ciently to the VMM can ameliorate some of this overhead. Xen

I/O [4] extends this concept by requiring guest changes and hav-

ing the special driver talk to a special VM that has direct hard-

ware access. Drivers can also be placed into individualized driver

VMs for better protection [13]. These techniques can often lead to

significantly better I/O performance. However, direct assignment

I/O, in which a device is directly controlled by the guest’s native

driver with no VMM intervention at all, still has the potential for

the highest performance. Unfortunately, it fails to guarantee the

reliability and security of the whole system, especially the VMM.

Passthrough I/O [14, 16, 18] exploits specialized hardware, which

we call self-virtualized devices, that allows direct guest access un-

der parameters determined by the VMM, thus providing both high

performance and security. However, this technique requires hard-

ware support that is not present in commodity I/O devices, and

makes other virtualization features such as migration more diffi-

cult.

We propose a novel I/O virtualization technique, virtual passthrough

I/O (VPIO). VPIO allows the guest’s native driver to have direct ac-

cess to a commodity device (one that does not have self-virtualization

support) most of the time. The VMM can assure, however, that the

guest does not maliciously or inadvertently program the device to

affect the VMM or the other guests. Furthermore, the VMM can

hand-off the physical device from one guest to another. The VPIO

concept is based on two claims:

• It is possible to build an inexpensive software model of a

device.1

• That model can be inexpensively driven by guest/device in-

teractions.2

If these claims hold, then VPIO is possible. We also assume that

the device can be context-switched.3

1Potentially, such a model could be provided by the device vendor.
It is essentially a much simplified behavioral model that could eas-
ily be produced as side effect of the device design or documentation
processes, or after the fact.
2This implies that most device programming interactions (such as
IN/OUT instructions and access to memory-mapped regions for
control or DMA) do not engage the VMM.
3This means either that we can copy the device state (e.g., registers)
to/from memory, or that the device is deterministic and so we can
restore device state by playing back a trace of interactions from a
reset.

83



The essential idea in VPIO is that the VMM maintains a formal

model of the I/O device that is driven by guest/device interactions.

The model can be far simpler than a driver or virtual device im-

plementation, and must only be sufficiently detailed so that when

faced with an interaction4, the model can determine:

• Whether the device is serially reusable after the interaction.

• Whether a DMA is about to start, and which host-physical

addresses will be involved.

With such a model, the VMM is able to determine whether a de-

vice interaction should be allowed to continue down to the physical

device, and at what points a device can be context-switched to a

different guest. Thus the VMM can multiplex a single commodity

physical device across multiple guests, each of which uses a native

driver.

Of course, if every guest/device interaction involves an exit into

the VMM, the performance will be terrible. The practicality of

VPIO hinges on the extent to which exits can be avoided through

modeling and systems techniques, and/or the extent to which the

overhead of an exit can be reduced.

The work most closely related to VPIO is that of Williams, et

al [22], which is contemporaneous.5 Similar to VPIO, this work

uses a model of the device to validate device driver interactions

with the device against a security policy. Their goal is to be able to

move device drivers out of the trusted computing base of a kernel.

The goal in VPIO is to let a guest kernel interact with a physical de-

vice in a secure and controlled manner, and to multiplex the device,

if possible.

In this paper, we describe the VPIO idea in more detail, and we

show our results in applying VPIO to commodity network cards.

Our results support the claims given above. We demonstrate that we

can model the network cards, drive the models with guest/device

interactions, and determine when the cards can be handed off. The

models themselves are quite inexpensive. We have built an imple-

mentation of the VPIO concept as well. Our preliminary results

indicate that with VPIO, the number of exits that the VMM must

handle to support the guest’s interaction with the NIC, is half as

many needed to support a traditional virtual NIC implementation.

In terms of virtualization overhead, this places VPIO squarely be-

tween a passthrough or self-virtualizing NIC approach and a tradi-

tional full virtual NIC approach.

2. PALACIOS
Palacios6 is an OS independent VMM designed as part of the the

V3VEE project (http://v3vee.org). The V3VEE project is

a collaborative community resource development project involv-

ing Northwestern University and the University of New Mexico. It

seeks to develop a virtual machine monitor framework for modern

architectures (those with hardware virtualization support) that will

permit the compile-time creation of VMMs with different struc-

tures, including those optimized for computer architecture research,

computer systems research, operating systems teaching, and re-

search and use in high performance computing. Palacios is the

4Think of an OUT instruction on a port associated with the device.
5The initial publication of this work was at the Workshop on I/O
Virtualization [23].
6Palacios, TX is the “Shrimp Capital of Texas”

Lines of Code

Component sloccount . wc *.c *.h *.s

Palacios Core (C+Assembly) 15,084 24,710

Palacios Virtual Devices (C) 8,708 13,406

XED Interface (C+Assembly) 4,320 7,712

Kitten Glue Module (C) 272 428

GeekOS Glue Module (C) 238 495

Total 28,621 46,751

Figure 1: Lines of code in Palacios and its OS interface modules

measured with the SLOCCount tool and with the wc tool.

Figure 2: Palacios architecture.

first VMM from the project and will form the basis of the broader

framework. Support for high performance computing significantly

informed its design.

Palacios currently targets the x86 and x86_64 architecture (hosts

and guests) and makes extensive, and non-optional use of the AMD

SVM [3] extensions (partial support for Intel VT [8, 21] is also im-

plemented). Palacios uses Intel’s XED library from Pin [15, 5],

to decode instructions in some cases, and it uses the BOCHS [12]

BIOS and VGA BIOS to bootstrap a guest machine. Palacios sup-

ports both 32 and 64 bit host OSes as well as 32 and 64 bit guest

OSes7. Palacios supports virtual memory using either shadow or

nested paging. It runs directly on the hardware and provides a non-

paravirtualized interface to the guest with optional paravirtualized

extensions. An extensive infrastructure for hooking of guest re-

sources facilitates extension and experimentation.

Palacios was developed from scratch at Northwestern University.

Figure 1 shows the scale of Palacios, as measured by two differ-

ent source code analysis tools. Note that the Palacios core is quite

small. The entire VMM, including the default set of virtual devices

is on the order of 28–47 thousand lines of C and assembly. Palacios

is publicly available from http://v3vee.org, and a technical

report [11] describes the initial release in detail. The second re-

lease is expected in April, 2009. Palacios is released under a BSD

license.

2.1 Architecture
Palacios is an OS independent VMM, and as such is designed to be

easily portable to diverse host operating systems. Currently, Pala-

764 bit guests are only supported on 64 bit hosts

84



cios actively supports Sandia National Lab’s Kitten operating sys-

tem, for high performance and multicore computing environments,

as well as GeekOS [7], an educational operating system developed

to teach operating system development. Palacios integrates with a

host OS through a minimal and explicitly defined functional inter-

face that the host OS is responsible for supporting. Furthermore,

the interface is modularized so that a host environment can decide

its own level of support and integration. Less than 500 lines of code

needed to be written to embed Palacios into Kitten or GeekOS.

Palacios is designed to be internally modular and extensible and

provides common interfaces for registering event handlers for com-

mon operations. Figure 2 illustrates the Palacios architecture.

Resource hooks. The Palacios core provides an extensive inter-
face to allow VMM components to register to receive and handle

guest and host events. Events that can be hooked include

1. guest model specific register reads/writes (MSR hooks),

2. guest I/O port reads/writes (I/O hooks),

3. guest physical memory reads/writes (memory hooks),

4. host interrupts for redirection into the guest (interrupt hooks),

5. host OS events such as keystrokes, passage of time, etc (host

events), and

6. guest hypercalls.8

It is also straightforward for VMM code to inject interrupts and ex-

ceptions into the guest. This combined functionality makes it pos-

sible to construct a wide range of different guest environments. We

include a configuration interface that supports common configura-

tion options (amount of memory, selection of virtual and physical

devices, etc).

Host OS interface. The host OS interfaces with Palacios through
a small set of functions:

• allocate_pages() and free_pages(): Allocates and

frees physical memory pages,

• malloc() and free(): Allocates and frees kernel heap

memory,

• vaddr_to_paddr() and paddr_to_vaddr(): Trans-

lates between host virtual addresses and host physical ad-

dresses.

• hook_interrupt() and ack_interrupt(): Passes

an interrupt directly to a guest, and acknowledges it.

• get_cpu_khz(): Determines CPU clock rate.

• yield_cpu(): Yields the CPU to the host OS.

In addition to this interface, Palacios also includes an optional socket

interface that consists of a small set of typical socket functions.

Palacios jointly handles interrupts with the host OS. In general,

Palacios can disable local and global interrupts in order to have

8Although Palacios is not a paravirtualized VMM, we do allow
direct guest calls to the VMM.

interrupt processing on a core run at times it chooses. For the most

part, handling interrupts correctly requires no changes on the part

of the host OS. However, for performance reasons, and for compli-

cated interactions such a passthrough devices, small host OS inter-

rupt handling changes may be necessary.

2.2 Palacios as a HPC VMM
Part of the motivation behind Palacios’s design is that it be well

suited for high performance computing environments, both on the

small scale (multicores) and on the large scale (Palacios runs on

Sandia’s Red Storm large scale distributed memory parallel ma-

chine). Palacios is designed to interfere with the guest as little as

possible, allowing it to achieve maximum performance. Several

aspects of its implementation facilitate this:

• Minimalist interface: Palacios does not require extensive host

OS features, which allows it to be easily embedded into even

small kernels, such as Kitten9 and Catamount [10].

• Full system virtualization: Palacios does not require guest

OS changes. This allows it to run existing kernels without

any porting, including lightweight kernels [17] like Kitten,

Catamount, Cray CNL [9], and IBM’s CNK [19].

• Contiguous memory preallocation: Palacios preallocates guest

memory as a physically contiguous region. This vastly sim-

plifies the virtualized memory implementation, and provides

deterministic performance for most memory operations.

• Passthrough resources and resource partitioning: Palacios al-

lows host resources to be easily mapped directly into a guest

environment. This allows a guest to use high performance

devices, with existing device drivers, with no virtualization

overhead.

• Low noise: Palacios minimizes the amount of OS noise [6]

injected by the VMM layer. Palacios makes no use of internal

timers, nor does it accumulate deferred work.

2.3 Symbiotic virtualization
Palacios also serves as a platform for research on symbiotic virtu-

alization, a new approach to structuring VMMs and guest OSes so

that they can better work together without requiring such coopera-

tion for basic functionality of the guest OS either on the VMM or

on raw hardware. In symbiotic virtualization an OS targets the na-

tive hardware interface as in full system virtualization, but also op-

tionally exposes a software interface that can be used by a VMM,

if present, to increase performance and functionality. Neither the

VMM nor the OS needs to support the symbiotic virtualization in-

terface to function together, but if both do, both benefit. Symbiotic

virtualization has the potential to provide the compatibility ben-

efits of full system virtualization while providing an incremental

path towards the functionality and performance benefits possible

with paravirtualization. The high performance computing context

provides a special opportunity for symbiotic virtualization because

there can be a much greater level of trust between the VMM, guest

OS, and applications.

Although symbiotic virtualization is an important concept in Pala-

cios, it is not currently used in VPIO. VPIO currently treats the

9A paper is forthcoming. More information, including source code,
for Kitten is available at http://software.sandia.gov/
trac/kitten

85



Guest OS

Unmodified

Driver

Physical Device

VMM

Hooked Request

Unhooked Request

Device Event

DMA operation

Guest OS

Unmodified

Driver

Device Modeling Monitor (DMM)

Figure 3: VPIO system.

guest as black box. We describe, in the conclusion, how VPIO

could leverage symbiotic virtualization for further performance en-

hancements.

3. VPIO CONCEPT
We now describe the general VPIO concept as shown in Figure 3.

The main component of VPIO is the Device Modeling Monitor

(DMM), which is deployed within the VMM. It intercepts device

requests from the guest device driver, receives events from physical

devices and delivers them to guests, drives an internal device state

model for each guest, and can determine whether the device can be

handed off to another guest, and what memory addresses a DMA

operation will involve. In essence, the DMM is responsible for vet-

ting device requests made by the unmodified device driver in the

guest OS. Only device requests necessary to maintain protection of

the VMM and other guests need to be vetted.

3.1 Device requests and events
The guest’s device driver talks to physical devices by device re-

quests made via I/O port reads/writes or by memory reads/writes.

In the VPIO system, these device requests either directly go to the

physical devices without VMM intervention, or are intercepted by

the VMM for further processing. The DMM also intercepts device

events on the physical device, such as device interrupts.

For performance, it is critically important that the DMM intercept

only the device requests and events that are necessary to success-

fully drive the device state model. Generally, all device events are

needed, but only a subset of the possible device requests are neces-

sary. The set of device requests to intercept is chosen dynamically

by the DMM. It maintains a hooked device requests list, a list of

the kinds of device requests that currently must be intercepted. The

unhooked device requests list are device requests which the device

supports, but that the model does not currently need.

Reducing the size of the hooked device requests list, and thus the

overall number of device request interceptions is critical for perfor-

mance. The hooked device requests list can be reduced by careful

modeling of the device. In a later section, we also discuss the possi-

bility of using code injection from the VMM into the guest to push

modeling functionality into the guest context, further reducing the

number of device requests that needed to be hooked by the VMM.

3.2 DMA
DMA is essential for high performance devices. In VPIO, we al-

low the guest to directly initiate DMA operations at guest physical

memory addresses. Notice that before DMA starts, the guest device

driver must set it up, using device requests that convey the DMA

parameters (starting address, length of the data, etc). By hook-

ing the relevant device requests, we acquire these parameters and

maintain them as part of the device state model. For some devices,

the device state model may also be able to simply read these pa-

rameters directly from the physical device. The device state model

alerts the DMM when a DMA is about to be started, and what the

source/target physical addresses are. This allows the DMM to (1)

change the addresses to appropriate host-physical addresses, and

(2) validate the addresses against the guest’s memory map.

A possible special case exists for a VMM running a single guest, as

appears likely to be common for high-end computing environments

such as the forthcoming Petascale machines: The VMM can be

loaded high in physical memory, the guest can be loaded at the start

of physical memory, and DMA address translation can be ignored.

3.3 Device multiplexing
VPIO multiplexes a physical device among multiple guests by es-

sentially context switching the device from guest to guest. The

device state model determines when a device is in a reusable state,

and can be switched. If a guest attempts to perform an operation

on a device it does not currently hold, it is blocked until the device

becomes available.

The DMM keeps a device context for each guest/device that in-

cludes the device state model, values of all relevant physical de-

vice control registers, and other device-specific flags related to that

guest. When the DMM hands off a physical device to another guest,

it performs the device context switch. The context switch saves all

values of the physical device’s control registers, flags and device

model to the current guest’s device context, and then restores these

with the values from the device context of the guest that is the next

owner of the device.

3.4 Device state model
The DMMmaintains a device state model for each guest/device that

keeps track of the current status (e.g, reusability, DMA operation

starting, etc) of the physical device as seen from the guest. The

device state model is updated by device requests (e.g. I/O port and

memory reads/writes) and physical device events (e.g. interrupts,

device faults).

Unlike a behavioral model, or a hardware model intended for ver-

ification purposes, the aim of the device state model is only to de-

termine (1) whether the device is reusable, (2) whether a DMA is

about to be initiated, and to where, and (3) what device requests the

model needs to see to update itself.

A device model is conceptually a state machine with additional

scratchpad information (e.g., DMA addresses). The edges are an-

notated with the device requests and physical device events that

trigger them, as well as with checking functions. A checking func-

tion is called before a state transition occurs, and must approve the

state transition. If state transition is denied, the device request fails,

and no state transition occurs. Optionally, a notification of failure

can be delivered to the guest. The checking functions reflect VMM

policy. As side effects, they also can change the hooked device

request list.

86



In designing a device model, we seek to keep its size (in terms of

number of states, number of transitions, and number of checking

functions) as small as possible while still being able to answer the

questions given above. One or more states must be marked as being

reusable in the model if it is to be possible to context switch the

device. Without such a marking, the device can only be assigned to

a single guest.

3.5 Dealing with failure
A natural question that arises is what the DMM should do if the

device state model shows that the guest is about to put the device

into an improper state. For example, suppose the guest attempts

to initiate a DMA into memory the guest does not own by using a

guest physical address for which there is no legitimately allocated

memory. In this case, the DMM cannot translate the guest physical

address and cannot allow the DMA to be initiated.

If the DMA is to read memory, the operation could be completed,

but using zero-filled pages allocated by the DMM. If the DMA is

to write memory, the operation could be silently ignored. After

all, a DMA to physical memory addresses where memory does not

exist would amount to a discard of the data. However, although the

DMA is not completed, the guest now expects the device to be in

some state valid with respect to the DMA it thinks it has initiated.

A simple approach to both DMA reads and writes to invalid guest

physical addresses is simply to inject a machine check exception,

or otherwise halt the guest. While probably the best solution, this

does make the physical device exposed via the VMM act slightly

differently than they would were the VMM not there.

3.6 Dealing with device handoff on interrupt
When a device event occurs, we would ideally vector the event to

the appropriate guest. However, for many devices, the appropriate

guest is not known at the time. For example, an incoming packet on

a network card may not have its destination MAC address known

until after the DMA transfer is complete, and the packet is resident

in memory. If we simply let the current guest execute the DMA

transfer, we will need, minimally, to be prepared to copy or page-

remap to move the received data to the appropriate guest (assuming

we can also make the current guest ignore it).

At the present time, we have not yet found a general purpose solu-

tion for this problem. Such a solution would allow either efficient

device hand offs to the appropriate guest on an interrupt, or effi-

ciently moving data received in the wrong guest to the appropriate

guest.

3.7 Performance concerns
The performance of VPIO for a given device is highly dependent

on (1) the complexity of updating the model, (2) the number of

device requests and events that must be intercepted, (3) the cost

of such interception, and (4) the cost of context switches. On its

face, VPIO looks like an expensive idea, but there are ameliorating

elements. First, the hooked device request list may be small for

a device, or for some modes of operation of the device. Second,

most of the cost of hooked device request interceptions is due to

VM exit and entry and thus will get cheaper with better hardware

or software support. Finally, the context of a device that needs to

be changed for a context switch may be small.

We consider performance in more detail later, but here we would

like to give initial consideration to (1), (3), and (4). In Figure 4, we

530

23976
22906.8

33582

1308 1218

0

5000

10000

15000

20000

25000

30000

35000

40000

1

C
y

c
le

s

Unhooked I/O -QEMU

Hooked I/O - QEMU

VMM Exit - QEMU

Device Context Switch - QEMU

Hooked I/O - HP

VMM Exit - HP

Figure 4: Costs of VPIO operations in Palacios for an NE2000

network card.

report CPU cycle timing using an emulated NE2000 network card

in the QEMU x86_64 (w/ SVM) emulated processor environment,

as well as an HP Proliant ML115 with an AMD Opteron 1210 pro-

cessor. While unhooked device requests operate at the speed of the

hardware, hooked device requests are dominated by the cost of a

VM exit, its handling, and the VM entry. Although the data needs

to be taken with a grain of salt, given that some of it is from an em-

ulated environment, it shows clearly that we must ameliorate the

high costs of hooked device requests by reducing their occurrence,

and reducing the cost of VM exit/entry handling. The former is our

opportunity, the latter depends on advances in hardware support for

virtualization. Notice, however, that the cost of a NE2000 context

switch is small—on par with handling a hooked device request.

Device request and event representational granularity, combined

with virtualization interception granularity, is an important device-

dependent feature that affects performance. Hardware and software

virtualization technologies limit the granularity at which device re-

quests can be observed. For example, with the AMD SVM exten-

sions, it is easy to intercept reads and writes on a per-I/O port basis,

but memory addresses are interceptable only on a per-page basis. If

the device designer places multiple control registers/control regis-

ter fields at the same I/O port or memory address10, or even on the

same page, more exits will be needed than are strictly necessary

given the fields/registers being changed.

4. EXAMPLE DEVICE MODELS
To test the claim that efficient VPIO device models can be built, we

developed models for two different network cards, the NE2000 and

the RTL8139. We now explain these models. The integration of the

models into Palacios’s virtual network card (VNIC) functionality is

discussed later.

The two device models were developed by hand, and each is based

on a state machine, an abstraction that is relatively simple to under-

stand and (we claim) to implement. However, this is obviously not

the only way to build a device model, especially for more general

devices. It is not the structure of the device model that is important,

but rather its existence and quick response to device requests and

10Multiple conceptual registers can be packed into one I/O register
using bitfields, or a device can use an address register plus data
register construction.

87



Initiate

Trans
DmaWr

TransDmaWr

Initiation

Idle

CMD: Trans

INT: TXOK

INT: TXOK

INT: RDC

CMD:

DmaWr

ST_ERROR

RST

INT: Error

CMD: Trans

INT: TXOK

INT: Rx_OK

DmaRd

TransDmaRd

From any state

CMD:

DmaRd

INT: RDCCMD:

DmaRd

INT:

RDC

CMD: Trans

Figure 5: Device model for NE2000 NIC.

events. Ideally, a device model for VPIO would be provided by the

device manufacturer. We claim that this could be done as a supple-

ment to the manufacturer’s internal formal description of the device

interface and behavior. Leveraging existing and future behavioral

models would make it possible to create VPIO device models for

past, present, and future devices.

4.1 NE2000 model
The NE2000-compatible network card (specifically, the Realtek

RTL 8029A chipset) is a relatively simple network card. It sup-

ports DMA for sends and receives using ring buffers.

The NE2000 model is an augmented finite state machine as de-

scribed in Section 3.4, and is illustrated in Figure 5. In the model,

each state represents one or a group of device register contents that

correspond to a device state of interest to the DMM. The arrows be-

tween states represent state transitions, while their annotations are

the events that drive these transitions. “Cmd: xxx” means a write

request (a device request) on the control registers by the guest (this

is how the guest starts an operation on the card, such as transmit-

ting a packet, starting a remote DMA transfer, etc). “INT: xxx”

means an interrupt (device event) was received from the physical

device (for example, a packet transmission completion or a packet

arrival). The actual I/O port numbers and masks are not shown in

the figure. The model’s complete implementation consists of ap-

proximately 900 lines of C code.

Checking functions are associated with some edges. For example,

whenever entering the DmaRD (DMA read is running) or DmaWr

(DMA write is running) state, the checking functions validate the

DMA parameters (such as destination/source physical memory ad-

dress and the transfer length). For this specific card, the device

model can directly read this information from card registers, avoid-

ing the need to hook the relevant ports to capture writes of those

registers. If a DMA were to violate the VMM’s policy, a device

failure would be reported to the DMM. On the NE2000, the DMA-

initiating I/O port write request can either be ignored, or a “remote

DMA failed” interrupt can be delivered to the guest.

The NE2000’s only reusable state is the “Idle” state. When the

model is in this state, the physical network card is idle. The DMM

could thus switch the network card to the other guest.

CMD: RST

ST_TX ST_SET_RX

ST_TX_RXSET

INITIATE

ST_IDLE
TSD: Write

INT: TX_OK

INT: Rx_OK

RCR: Write

RCR: Write

ST_ERROR

CMD: RST

ST_ERROR

INT: Error

INT: Error

INT: Error

TSD: Write

INT: TX_OK

INT: Rx_OK

Figure 6: Device model for RTL8139 NIC.

4.2 RTL8139 model
The RTL8139 (specifically, the Realtek RTL 8139D chipset) is a

more recent, and more widely used network card. It uses a more

general form of DMA to transmit and receive packets. Multi-word

DMA is automatically performed without the intervention of the

guest’s device driver once the driver has configured the DMA trans-

fer. Five control registers are used to describe a DMA operation,

while two registers (Transmit Status Descriptor and Receiver Con-

figure Register) are used to initiate the DMA transfer.

Figure 6 illustrates our device model for the RTL8139. The actual

implementation is 1300 lines of C code. Although the RTL8139 is

more complicated than NE2000, its device model is of comparable

complexity. The primary reason for this is that most of the physical

status is invisible to the device driver, and thus not of concern to

our device model.

5. VPIO-NIC IMPLEMENTATION

IN PALACIOS
We have implemented VPIO versions of the NE2000 and RTL8139

network cards in Palacios, along with passthrough and fully emu-

lated versions. The VPIO network device that supports these oper-

ating modes is referred to as the VPIO-NIC.

5.1 VPIO-NIC: DMM
The VPIO-NIC design separates the model-independent compo-

nent (i.e., the DMM) from the specific implementation of the de-

vice model. In principle, the DMM should be reusable with other

network interface card models.

Device requests. In Palacios, the guest’s device driver talks to
physical devices either by IN and OUT instructions to relevant de-

vice I/O ports (Programmed I/O or PIO) or by reads and writes to

memory-mapped registers (Memory-Mapped I/O or MMIO) of the

device. For PIO, Palacios provides the ability to intercept any I/O

port reads or writes using AMD SVM or Intel VT hardware sup-

port. An I/O port read or write in the guest causes a VM exit to Pala-

cios, which decodes the instruction and vectors the read or write to

VPIO-NIC. If the operation is allowed, VPIO-NIC can then handle

it. For MMIO, Palacios supports memory read/write interception

on page size granularity using either shadow paging or nested pag-

ing techniques. We support both PIO and MMIO devices in our

current VPIO-NIC implementation.

88



For a device using I/O ports, such as the NE2000, VPIO-NIC main-

tains a hooked I/O list—guest reads or writes to the I/O ports on the

list are intercepted and handed off to VPIO-NIC. VPIO-NIC uses

these operations to update the device state model. The other de-

vice I/O ports are kept on the unhooked I/O list. Both lists can be

dynamically updated based on the device state model.

The hooked I/O list and hooked memory page list are stored in sep-

arate Red-Black trees that provide logarithmic lookup times. How-

ever other implementations, such as hash tables, are possible. For

a typical device, with < 100 hooked resources, access time is rea-

sonable. Each hooked resource is associated with callback func-

tions for reading and writing, which, in this case, point back into

VPIO-NIC.

Device state model interface. The design of the VPIO-NIC
DMM attempts to make it independent of the implementation of the

device state model. Ideally, device state model implementations act

as independent components that can be selected at compile- (and

eventually run-) time. VPIO-NIC provides a standard interface for

interacting with the device model. VPIO-NIC expects the follow-

ing interface from the device model:

• init_model() : Initiate the device model, setting up ini-

tial environment variables for both the DMM part and the

device model part. The VPIO-NIC functions like fully virtu-

alized NIC until the device model is initialized.

• update_model(event-type,

port_number/memory/interrupt,

read/write,

value,

other_info)

: Update the model with the event. The function can re-

turn success or failure. If success is returned, this means the

model successfully transitioned to the next state. If failure is

returned, the model indicates the reason for the failure. Event

here refers both to device requests from the guest and device

events from the physical device.

• check_model() : This indicates whether the device is

reusable, or if a DMA has been initiated. In the latter case,

the address is also indicated.

• deinit_model() : Detach the currently used device model,

remove any port or memory hooks and other dependent pa-

rameters for this device model.

The device state model uses the following interface to hook device

requests and access raw devices:

• hook_port(port_number, read/write) : Hook the

port on read, write or both.

• unhook_port(port_number, read/write) : Un-

hook the previous hooked port access on read, write or both.

• port_access(port_number,

read/write,

return/write_value)

: Read or write from/to the port on the physical device.

• Similar functions for hooking and unhooking memory re-

gions.

Interrupts. Interrupts are generated by network card devices to
notify the device driver that an event has occurred, for example, a

packet has been transmitted, a packet has been received, a device

error has occurred, etc.

In Palacios, an interrupt that occurs while the guest is running

causes a VM exit. Network card interrupts are hooked using Pala-

cios so that they ultimately vector into VPIO-NIC.11 The VPIO-

NIC handler determines the interrupt type by reading the interrupt

status registers of the physical device and updates the device state

model with the interrupt event and type. If the model is updated

successfully, VPIO-NIC injects a copy of the interrupt into the

guest using Palacios’s virtual PIC or APIC. If the model is not up-

dated successfully, VPIO-NIC can choose not to inject an interrupt

or to inject a different kind of interrupt. Interrupts can be injected

at other times as well. For example, if the model indicates that the

guest is initiating an illegal DMA, VPIO-NICmight inject a “DMA

failure” interrupt.

For most devices, the guest device driver determines the reason for

an interrupt by reading interrupt-related status registers. For this

reason, VPIO-NIC virtualizes all of the interrupt status registers in-

stead of allowing the guest to access the physical registers directly.

DMA. DMA operations need to be handled carefully in VPIO-
NIC. In the case of transmitting a packet the guest typically stores

a packet of data at some guest physical address, and informs the

NIC of this address and the length of the packet to the device by

writing these values to a set of control registers (ports). After that,

the device driver issues a “DMA start” command by writing to a

specific command register (or registers). The NIC will then start

transferring the data from the specified source memory address to

the destination address (typically, via a ring buffer). When done, it

will raise an interrupt. The process for packet reception is similar.

In principle, VPIO-NIC knows when the guest is initiating a DMA

because of its interception of read/writes to the command registers.

Additionally, it can determine the DMA parameters (source/destination

memory address, transfer length) by either intercepting the write

operations to the relevant registers, or by reading the address back

from the relevant registers on the NIC just before the DMA is ini-

tiated. The latter option can further reduce the device requests that

need to be intercepted.

The device state model plays the principle role in detecting initia-

tion of DMA since it is familiar with the device. In particular, it

notifies VPIO-NIC that the subsequent state is the DMA operation

state. The checking function is called before going to the DMA

state to validate the DMA address and other parameters. If the pa-

rameters are legal, the device state model returns success and VPIO

issues the DMA start command to the physical NIC. The check

function is also responsible for setting the ultimate DMA source

or destination address. This is important as the guest device driver

uses guest physical memory addresses (GPA) when it issues DMA

operations, and these are usually not the same as the host physi-

cal memory addresses used by the physical device. The model can

also determine that the DMA is illegal and return failure. When

this occurs, the response is device-dependent.

11This is strictly the case when passthrough or virtual passthrough
support is used. When the fully virtualized NIC support is used, the
interrupt is handled by the host OS’s device driver, which in turn
creates a host event for VPIO-NIC.

89



Device failure. When the device state model shows that the
guest is about to put the device into an improper state (if, for exam-

ple, the guest has initiated a DMA write to memory the guest does

not own) the guest’s device request should not be allowed. How

VPIO-NIC handles the failure depends on the failure type, the un-

derlying physical device, and the guest operating system.

The VPIO-NIC provides several options to respond to a device fail-

ure. If the failure to update the device model is due to an illegal I/O

port access (a write to a disallowed port, or a write of an illegal

value), VPIO-NIC provides two options for handling it. The first is

to ignore the I/O request and let it fail silently. In this case writes

are discarded, while reads returns zero. Another option is to inject a

machine check exception into the guest, typically making the guest

OS halt. This option is used when the guest tries to access sensi-

tive ports where silent failure would likely confuse the guest. The

hooked I/O port list structure includes the failure handling method,

and can be changed by the device model during run time.

If the failure to update the device model is caused by an illegal

DMA operation (an illegal memory address or illegal device state),

the VPIO-NIC can respond in three possible ways. The basic re-

sponse is silent failure—a DMA read returns zeros while a DMA

write is ignored. The assumption here is that the guest device driver

or higher level code will fix the error. For example, TCP can re-

transmit the packet. Another option is for VPIO-NIC to inject a

virtualized device interrupt into the guest (DMA failure, send or

receive failure, etc) to notify it of the failure. The final option is to

inject a machine check. In this case, the choice of failure handling

is made at compile time.

Reusable state and device context switch. When the cur-
rent state of the device model is a reusable state, it is safe for VPIO-

NIC to context switch the physical NIC to a different guest. The

VPIO-NIC device context contains all of the visible registers of the

NIC, a copy of the accessible on-chip memory (if any), the device

state model for that specific guest, and other control information

for VPIO-NIC (values contained in the virtualized device registers,

flags, etc). Once the current device state model indicates the de-

vice is in a reusable state, and there is another guest requesting the

device, VPIO-NIC stores the device context for the current guest,

resets the device, and loads the device context corresponding to the

new guest, including all of the register contents.

5.2 NE2000
We now discuss the part of the VPIO-NIC implementation that is

specific to the NE2000 NIC.

Device model. As described in Section 4.1, The NE2000 de-
vice model is implemented as an extended state machine, including

states, state transitions, events, and checking functions. This in-

cludes a “reusable” state (Idle), as well as an “illegal” state, which

is the state transitioned to if an unexpected event occurs. In our

implementation, each state and event is represented as a unique in-

dex with attached information. States and events are stored in hash

tables.

The state machine transitions are represented as a matrix that uses

the current state and event as indices. Each entry contains the sub-

sequent state (possibly the illegal state), and the checking function

associated with the state transition. For the NE2000, there are about

10 states with 20 events/requests, yielding a matrix with only 2̃00

entries.

Device requests (I/O port accesses) and interrupts are mapped to an

internal event type. An event table translates the event data supplied

by VPIO-NIC (the arguments to update_model() to an internal

event that is used to drive the state machine.

Any necessary address and security validations are performed in-

side the checking function. In our current version, this function val-

idates the DMA destination address, which it determines by read-

ing from the control registers (Remote Address and Remote Count

registers) on the physical NE2000 NIC.

The update_model() call supplies the current event parame-

ters as either {port number, read/write, value} or {interrupt, inter-

rupt status value}, which are translated to the internal event type.

Using the current state and the current event, the model finds the

corresponding entry in the state transition matrix. If this indicates

that the next state is legal, it runs the attached checking function.

If the checking function returns true, it sets the current state to the

next state and returns success. If the next state is illegal or the

checking function returns false, the current state is not changed and

update_model() returns false with a specific code for the fail-

ure.

There are three approaches for handling device failure in the NE2000

VPIO. If the failure is caused by a read on an invalid port, the read

returns a NULL value. Writes to invalid ports fail silently. For an

invalid DMA operation, a DMA failure interrupt is injected into

to the guest to notify the device driver. A DMA error is signi-

fied by setting the transmit error bit in the interrupt status register.

For other events that would result in a transition to an illegal state,

VPIO-NIC injects a machine check exception into the guest.

Interrupts. The guest accesses the Interrupt Status Register (ISR)
to determine the cause of an interrupt. The guest can also mask

any interrupt by setting the corresponding bit in the Interrupt Mask

Register (IMR). Details on the status of the most recent packet

transmission and reception can be read from the Transmit Status

Register (TSR) and Receive Status Register (RSR). In the NE2000

VPIO-NIC, reads and writes to these four registers are always hooked

and virtualized. This allows for both physical device interrupts and

software-generated interrupts to be handled in a common manner.

DMA. DMA operations on the NE2000 NIC function as follows:

1. A pair of registers denoted as RBCRx are loaded with the

data size to be transferred.

2. Another pair of registers, RSARx, are loaded with the low

and high byte of the target DMA address (normally this ad-

dress should fall in the device’s ring buffer).

3. The COMMAND register is set to “start” and “remote write

(or read) DMA”.

4. Packet data is now written to or read from the “Data Port” of

the NIC in a loop. The NIC updates its remote DMA logic

after each byte and places the byte into the target memory

address.

5. Finally, the NIC sets the “Remote DMA completed” bit in

the ISR register.

The NE2000 VPIO-NIC does not have to actually hook and virtual-

ize the DMA parameter register pairs (RBCRx and RSARx) since

90



it can simply read their values directly from the device. When the

guest writes to the COMMAND register (step 3), the state model

changes to the DMA read or write state after the checking function

validates and adjusts the target DMA address.

5.3 RTL8139
The device state model implementation for the RTL8139 NIC is

very similar with the NE2000 model described above. The primary

difference is that the RTL8139 uses memory-mapped I/O instead

of programmed I/O. This has important implications for perfor-

mance since memory can only be hooked at the page level. On

the RTL8139, all of the control registers are mapped into a 256

byte memory region. Since memory can only be hooked per page,

access to any of these registers will cause a VM exit, even if the ad-

dress does not correspond to a register needed by the device model.

Accesses to registers required by the model are handled in a similar

fashion as the NE2000 implementation. All other requests are sim-

ply applied directly to the physical device, albeit with the overhead

of the VM exit/entry.

5.4 VNIC
VPIO-NIC also supports a mode of operation in which it behaves

like a traditional, fully virtualized network device of the relevant

type. To implement this, we ported the virtual NE2000 and RTL8139

NIC implementations from QEMU to Palacios.

5.5 Passthrough NIC
VPIO-NIC can also operate in a pure passthrough mode in which

the guest has direct access to the underlying network card. No I/O

or memory operations by the guest cause VM exits. Here, the NIC

is fully assigned to only a single guest. However, interrupt handling

still requires VM exits, since Palacios requires exits on all inter-

rupts to allow the host OS the opportunity to handle them. When

an interrupt from the physical NIC occurs, the CPU performs a

VM exit, Palacios injects the interrupt into the guest, and performs

a VM entry. The only effect is that interrupt latency increases due

to the cycles required for a VM exit/entry.

6. PERFORMANCE
We now present the results of an initial performance evaluation of

VPIO-NIC. The high level results are the following:

• Most importantly, the number of VM exits needed to support

VPIO is greater than the number needed for passthrough I/O,

but less than the number needed by a traditional virtualized

NIC (VNIC). This supports our claim that the VPIO concept

is an interesting point in the design space for I/O virtualiza-

tion, providing some of the performance of passthrough I/O

without the security issues.

• The VM exit handling cost for VPIO-NIC is greater than that

for passthrough I/O, but less than that of a traditional virtual-

ized NIC. This also supports the case that VPIO is an inter-

esting design possibility.

• The achievable throughput of VPIO-NIC is between that of

passthrough I/O and a traditional virtualized NIC.

Our results are preliminary. It is especially important to note that

our evaluation is done in the QEMU emulator. Our VM exit results

are robust, as the same exits occur on QEMU as in real hardware.

Scenario Total I/O I/O hooked Ratio (%)

Linux: ssh 62393 21692 34.8%

Linux: small dl 212147 69700 32.9%

Linux: large dl 32945087 9429917 28.6%

Windows: ssh 184195 28667 15.6%

Windows: small dl 236065 39089 16.6%

Windows: large dl 2413277 413779 17.1%

Figure 9: Number of I/O exits for NE2000 Device Model in var-

ious network workloads.

However, the other numbers need to be taken with a grain of salt.

We use the cycle counter to measure time, but because QEMU is

not a cycle accurate emulator the values are not reflective of actual

hardware. We are currently working to evaluate VPIO-NIC on real

hardware.

6.1 Setup
We have evaluated the performance of passthrough, VPIO, and

VNIC versions of both the NE2000 and RTL8139 network cards.

We tested communication between a VM running on Palacios within

QEMU and a physical machine. Specifically, we used a version of

Palacios embedded into GeekOS to run (32 bit) Puppy Linux 3.0.1.

Two instances of QEMUwere run on a dual quadcore 1.6 GHz Intel

Xeon with 8 GB RAM running Red Hat Enterprise Linux 5 (2.6.18

kernel), with each connected to a local network created with a TAP

interface.

The primary benchmark we use is IPERF [1], communicating 1

MB of data over TCP using 64 KB socket buffers.

6.2 VM exits
As described in Section 3.7, the number of VM exits per packet

transmission or reception is a serious performance impediment for

virtualized network cards, but is almost entirely avoided for passthrough

cards. To compare these techniques against VPIO, we measured

the number of exits caused by device requests and device events.

Recall that for passthrough I/O, all of the VM exits are caused by

interrupts from the physical device being forwarded via Palacios.

Figure 7 shows the number of exits needed to send and receive

a packet for passthrough I/O, VPIO, and VNIC implementations

of the NE2000. The totals for VPIO and VNIC include exits due

to I/O port access and interrupts. As can be seen, the number of

exits for a VPIO implemantation are about half that of a VNIC

implementation.

Figure 8 shows the equivalent results for the RTL8139. Again, the

number of exits per packet for VPIO is about half of those for the

VNIC. Again, the totals for VPIO and VNIC include exits due to in-

terrupts and register accesses. However, it is important to note that

we are only counting register accesses that are needed. However,

since it is only possible to hook the RTL8139’s memory mapped

registers at page granularity, we are taking additional exits for ac-

cesses not required by the device model.

Figure 9 suggests why the number of exits needed for VPIO is so

much lower than for the VNIC. Here, we have run a wider range

of application performance tests, including interactive ssh and scp-

based downloads of large and small files. The figure examines the

number of I/O port interceptions needed to support the VPIO im-

plementation. As we can see, only 15.6–34.8% of I/O port accesses

91



0

5

10

15

20

25

30

35

Passthrough VPIO VNIC

E
x
it

s

Send Packet Receive Packet

Figure 7: Average number of exits to send or receive a packet on the NE2000, comparing passthrough I/O, VPIO, and VNIC

implementations.

0

5

10

15

Passthrough VPIO VNIC

E
x

it
s

0

5

10

15

Passthrough VPIO VNIC

E
x

it
s

(a) Send (b) Receive

Figure 8: Average number of exits to send or receive a packet on the RTL8139, comparing passthrough I/O, VPIO, and VNIC

implementations.

need to be intercepted in order to drive the VPIO version of the

NE2000. The update cost for the NE2000 device model is on the

order of 100 cycles (on the real hardware) per intercepted I/O.

VPIO offers an intermediate option which requires far fewer exits

than a pure VNIC, while simultaneously providing security that a

pure passthrough implementation cannot. The VPIO-NIC is more

efficient than a pure VNIC in terms of the number of exits per

packet needed to support it.

6.3 Exit costs

In addition to the number of exits per packet, it is also important to

consider the costs of exit handling. After all, it could be that VPIO

takes fewer exits, but each is more expensive. Figure 10 shows the

average number of CPU cycles needed for exit handling per packet

on the various implementations of the NE2000. As we can see, the

total time per packet spent in the VMM for VPIO handling is, in

fact, an order of magnitude less than that needed for the VNIC. It

is, however, an order of magnitude more than for the passthrough

option. Again, we see that VPIO is an interesting point in the design

space between these two.

Figure 11 shows a further breakdown of the average overheads in-

92



Average Exit Handler Time on Each Exit

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

Passthrough VPIO VNIC

C
y
cl

e 
C

o
u

n
ts

Send Packet Receive Packet

Figure 10: Average exit handling cost per packet for the

NE2000, comparing passthrough, VPIO and VNIC options.

Figure 11: Breakdown of overheads for sending and receiving

a packet on the NE2000 NIC.

curred in sending or receiving one 1500 byte packet. We break

down the overheads into cycles spent in the guest, cycles spent in

basic VM exit/entry processing, and cycles spent in the VMM to

process device handling. While analogous measurements for the

RTL8139 have not yet been completed, we expect them to be quite

similar.

6.4 Application performance
Wemeasured the throughput for the passthrough, VPIO, and VNIC

versions of the NE2000 and compared this to native performance.

The throughput was measured using IPERF, with the actual mea-

surement done on a physical machine to get accurate timing. It is

important to take the results with a grain of salt given that in all

cases the tests were run inside the QEMU emulator, and not on real

hardware.

Figure 12 shows the results. None of the virtualized options (Passthrough

I/O, VPIO, VNIC) are able to achieve the throughput the NIC is ca-

pable of, although their performance does rank them as we might

expect, with VPIO being intermediate in performance between Passthrough

I/O and VNIC. We are currently investigating these results.

7. CONCLUSIONS

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

w/o VMM Passthrough VPIO VNIC

T
h
ro

u
g
h
p
u
t 

(K
B

it
s/

S
ec

)

32KB 64KB 128KB 256KB

Figure 12: Network throughput using the different versions of

the NE2000 device. We also show the performance achieved

without virtualization.

We have proposed a new technique for I/O virtualization of com-

modity I/O devices, virtual passthrough I/O (VPIO). VPIO is an

intermediate option between passthrough I/O and traditional fully

emulated virtual devices. It provides some of the performance of

the former, while maintaining the security/protection of the latter.

VPIO implements a device state model in the VMM that vets guest

access to the physical network card. The overhead of running the

model is much less than the overhead of fully virtualizing the de-

vice.

We implemented VPIO versions of two network cards, the NE2000

and the RTL8139, and presented an initial performance evaluation

that suggests the VPIO point in the design space for I/O virtualiza-

tion is quite an interesting one. We found that the costs of a VPIO

NIC, in terms of number of exits and exit handling cost per packet,

are about half that of a traditional fully virtualized NIC.

The key challenge in further improving the performance of VPIO

is to decrease the number of exits and their costs even more. It is

clear that while we can reduce the number of device requests and

events that we need to intercept through careful device modeling,

the high cost of interceptions and VM exit/entry in the VMM is

the most problematic issue with the VPIOmodel. We are exploring

how to reduce this cost by pushing as much of the model as possible

into the guest OS through code injection, a form of symbiotic vir-

tualization. The model would then only cause exits from the guest

under unusual conditions. Of course, this means the VMM must

be able to dynamically insert binary code into the guest, transform

guest code it finds (e.g., the guest’s device driver needs to have its

I/O operations changed to calls to the model), and guarantee that

I/O operations cannot occur outside of those in the injected code.

Hardware virtualization features could also enhance VPIO perfor-

mance. Driving the raw overhead of VM exits/entries down would

create significant benefits. Further, being able to intercept device

requests at a finer granularity would be extremely beneficial. This

is particularly the case for memory-mapped I/O. Current hardware

supports interception only at the granularity of pages, which is far

too large for many interesting devices.

This paper did not address how to safely handle device input that

is being multiplexed to different VMs. Specifically in the case of

a network card where network traffic can arrive anytime. We can

only say that it is currently unclear exactly how to extend VPIO to

93



allow guests to securely receive data destined for another guest.

However, it should be noted that while that is a very real issue

for a device such as a network card, other devices don’t necessar-

ily follow that I/O model. We should also acknowledge that it is

increasingly becoming apparent that device manufacturers are be-

ginning to look at designing self-virtualizing devices. While self-

virtualization is a powerful abstraction, we note that hardware vir-

tualization techniques have yet to fully prove that they can offer

better performance than software based approaches [2].

Finally, we conclude by noting that device models for VPIO func-

tionality could readily be provided by hardware manufacturers. A

model such as that of Figure 5 is essentially a behavioral model that

is already produced as part of the design and verification process.

For this reason, models for past, present, and future devices could

be readily created.

8. REFERENCES
[1] http://sourceforge.net/projects/iperf.

[2] ADAMS, K., AND AGESEN, O. A comparison of software and
hardware techniques for x86 virtualization. In ASPLOS-XII:
Proceedings of the 12th international conference on Architectural

support for programming languages and operating systems (New
York, NY, USA, 2006), ACM, pp. 2–13.

[3] AMD CORPORATION. AMD64 virtualization codenamed “pacific”
technology: Secure virtual machine architecture reference manual,
May 2005.

[4] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS,
T., HO, A., NEUGEBAUER, R., PRATT, I., AND WARFIELD, A.
Xen and the art of virtualization. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP) (October 2003).

[5] BUNGALE, P., AND LUK, C.-K. Pinos: A programmable framework
for whole systtem dynamic instrumentation. In Proceedings of the
3rd international conference on Virtual execution environments

(VEE) (June 2007).

[6] FERREIRA, K., BRIDGES, P., AND BRIGHTWELL, R.
Characterizing application sensitivity to os interference using
kernel-level noise injection. In Proceedings of ACM/IEEE SC
(Supercomputing) (November 2008).

[7] HOVENMEYER, D., HOLLINGSWORTH, J., AND BHATTACHARJEE,
B. Running on the bare metal with geekos. In Proceedings of the
35th SIGCSE Technical Symposium on Computer Science Education
(SIGCSE) (2004).

[8] INTEL CORPORATION. Intel virtualization technology specification
for the ia-32 intel architecture, April 2005.

[9] KAPLAN, L. Cray CNL. In FastOS PI Meeting and Workshop (June
2007).

[10] KELLY, S., AND BRIGHTWELL, R. Software architecture of the
lightweight kernel, Catamount. In Proceedings of the 2005 Cray
Users’ Group Annual Technical Conference (May 2005), Cray Users’
Group.

[11] LANGE, J. R., AND DINDA, P. A. An introduction to the Palacios
Virtual Machine Monitor—release 1.0. Tech. Rep.
NWU-EECS-08-11, Northwestern University, Department of
Electrical Engineering and Computer Science, November 2008.

[12] LAWTON, K. Bochs: The open source ia-32 emulation project.
http://bochs.sourceforge.net.

[13] LEVASSEUR, J., UHLIG, V., STOESS, J., AND GOETZ, S.
Unmodified device driver reuse and improved system dependability.
In Proceedings of the Symposium on Operating Systems Design and
Implementation (2004).

[14] LIU, J., HUANG, W., ABALI, B., AND PANDA, D. High
performance vmm-bypass i/o in virtual machines. In Proceedings of
the USENIX Annual Technical Conference (May 2006).

[15] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A.,
LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZELWOOD, K.
Pin: Building customized program analysis tools with dynamic
instrumentation. In Proceedings of the ACM SIGPLAN 2005
Conference on Programming Language Design and Implementatin

(PLDI) (June 2005).

[16] RAJ, H., AND SCHWAN, K. High performance and scalable i/o
virtualization via self-virtualized devices. In Proceedings of the 16th
IEEE International Symposium on High Performance Distributed

Computing (HPDC) (July 2007).

[17] RIESEN, R., BRIGHTWELL, R., BRIDGES, P., HUDSON, T.,
MACCABE, A., WIDENER, P., AND FERREIRA, K. Designing and
implementing lightweight kernels for capability computing.
Concurrency and Computation: Practice and Experience 21, 6
(April 2009), 793–817.

[18] SHAFER, J., CARR, D., MENON, A., RIXNER, S., COX, A. L.,
ZWAENEPOEL, W., AND WILLMANN, P. Concurrent direct network
access for virtual machine monitors. In HPCA ’07: Proceedings of
the 2007 IEEE 13th International Symposium on High Performance
Computer Architecture (Washington, DC, USA, 2007), IEEE
Computer Society, pp. 306–317.

[19] SHMUELI, E., ALMASI, G., BRUNHEROTO, J., CASTANOS, J.,
DOZSA, G., KUMAR, S., AND LIEBER, D. Evaluating the effect of
replacing CNK with Linux on the compute-nodes of Blue Gene/L. In
Proceedings of the 22nd International Conference on

Supercomputing (New York, NY, USA, 2008), ACM, pp. 165–174.

[20] SUGERMAN, J., VENKITACHALAN, G., AND LIM, B.-H.
Virtualizing I/O devices on VMware workstation’s hosted virtual
machine monitor. In Proceedings of the USENIX Annual Technical
Conference (June 2001).

[21] UHLIG, R., NEIGER, G., RODGERS, D., SANTONI, A., MARTIN,
F., ANDERSON, A., BENNETTT, S., KAGI, A., LEUNG, F., AND
SMITH, L. Intel virtualization technology. IEEE Computer (May
2005), 48–56.

[22] WILLIAMS, D., REYNOLDS, P., WALSH, K., SIRER, E. G., AND
SCHNEIDER, F. Device driver safety through a reference validation
mechanism. In Proceedings of the 8th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 2008)

(December 2008).

[23] XIA, L., LANGE, J., AND DINDA, P. Towards virtual passthrough
I/O on commodity devices. In Proceedings of the Workshop on I/O
Virtualization at OSDI (December 2008).

94




